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Signal detection via residence-time asymmetry in noisy bistable devices
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We introduce a dynamical readout description for a wide class of nonlinear dynamic sensors operating in a
noisy environment. The presence of weak unknown signals is assessed via the monitoring of the residence time
in the metastable attractors of the system, in the presence of aknown, usually time-periodic, bias signal. This
operational scenario can mitigate the effects of sensor noise, providing a greatly simplified readout scheme, as
well as significantly reduced processing procedures. Such devices can also show a wide variety of interesting
dynamical features. This scheme for quantifying the response of a nonlinear dynamic device has been imple-
mented in experiments involving a simple laboratory version of a fluxgate magnetometer. We present the
results of the experiments and demonstrate that they match the theoretical predictions reasonably well.
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I. INTRODUCTION

A large class of dynamic sensors have nonlinear inp
output characteristics, often corresponding to a bistable
tential energy function that underpins the sensor dynam
These sensors include magnetic field sensors, e.g., the si
fluxgate sensor@1,2# and the superconducting quantum inte
ference device@3#, ferroelectric sensors@4#, and mechanica
sensors@5#, e.g., acoustic transducers, made with piezoe
tric materials. In many cases, the detection of a small dc
low-frequency target signal is based on a spectral techn
@1,2# wherein a known periodic bias signal is applied to t
sensor to saturate it, driving it very rapidly between its tw
locally stable attractors that correspond to the minima of
potential energy function, when the attractors are fix
points. Usually, the amplitude of the bias signal is taken to
quite large, often above the deterministic switching thresh
that is itself dependent on the potential barrier height and
separation of the minima, in order to render the respo
largely independent of the noise. In this configuration,
switching events between the stable attractors are contro
by the signal. In the presence of background noise and
sence of the target signal, the power spectral density of
system contains only odd harmonics of the bias signal~taken
to be time sinusoidal!. For the case ofsubthreshold bias sig-
nals, one may analyze the response in the context of
stochastic resonance~SR! scenario@6#, wherein the spectra
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amplitude of each harmonic achieves a maximum for a c
tain noise intensity. The threshold crossing events are n
controlled, but a synchrony of sorts@7# between the mean
crossing rate and the signal frequency is obtained for a c
cal noise intensity. The effect of an additional target dc sig
is, then, to skew the potential, resulting in the appearanc
features at even harmonics of the bias frequencyv @8# in the
system response. For the case ofsubthreshold bias signals
the SR scenario has been analyzed for prototype bist
systems@8#. The spectral amplitude at 2v is zero unless the
asymmetrizing dc signal is present, hence the appearanc
power at 2v and its subsequent analysis has been propo
as a detection/quantification tool for the target signal@8#,
given that v is known a priori. In practice, a feedback
mechanism is frequently utilized for reading out th
asymmetry-producing target signal via a nulling techniq
@1–3#.

The above readout scheme has some drawbacks. C
among them is the requirement of large onboard powe
provide a high-amplitude, high-frequency bias signal for t
case when one uses asuprathreshold bias signal. The feed
back electronics can also be cumbersome and introduce
own noise floor into the measurement and, finally, a hig
amplitude, high-frequency bias signal often increases
noise floor in the system. The power constraints could
mitigated somewhat by utilizing a low-amplitude, low
frequency bias signal, and allowing the crossing events to
largely noise controlled; this is the SR scenario. With mo
erate amounts of noise, this scenario could work, the prim
concern being obtaining an appreciable number of cross
events in the limited time one has to observe the target
nal. Since the bias signal is controllable one could, in pr
ciple, adjust its amplitude to obtain an adequate numbe
crossing events per unit time, assuming that the noise fl
and locations of the stable minima of the potential ene
©2003 The American Physical Society20-1
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function are beyond control. If the crossing rate is~even
approximately! known in the absence of the bias signal, th
the signal frequency may be appropriately adjusted to y
optimal performance@6,8#. In some situations involving high
noise intensity, one may not even need a bias signal, if
noise is strong enough to yield an acceptable crossing
This special case is intriguing; it affords the possibility
operating the sensor~clearly under very specific conditions!
with minimal onboard power. This situation was discuss
earlier @9#. Clearly, however, any sensor configuration, p
ticularly one with asubthreshold bias signal, is very depe
dent on the conditions of the experiment or the particu
signal analysis task at hand. The commonly used measu
describe SR, the signal-to-noise ratio at the fundamental
higher harmonic frequency of the periodic bias signal, is
always the most informative one from a signal analy
standpoint. Rather, information-based measures@10# that can
be connected to the signal detection statistics may be m
useful. Such a description has been rigorously obtaine
the SR scenario for a prototype system subject to a sm
asymmetrizing dc target signal with a known time-period
bias signal, in Gaussian background noise@11#.

The above preamble delivers an outline of read
schemes based on a computation of the power spectru
information transfer as an appropriate measure of the sys
response. We propose here, a description of the sys
dynamics that makes possible the use of a measurem
technique based on the system residence times in its st
states@9#. For a two-state system, the residence time in o
of the stable steady states is defined as the time elapse
tween the first crossing of that threshold and the first cro
ing of the other threshold. In the presence of a noise ba
ground, the residence times in the stable states have ran
components. The residence-time statistics in a bistable
tem were proposed for the first time in@12# as a quantifier for
the SR phenomenon that involves, as already mentio
subthreshold driving signals. They have also been studie
a prototype bistable model system@13#. Important features of
the residence-time distribution are often seen in neuroph
ological experimental data. It is widely believed that t
point process generated by successive ‘‘firing’’ events c
tains much relevant information about the stimulus that le
to the firing @14#. Under the appropriate conditions on th
spike train, most importantly a renewal character correspo
ing to uncorrelated crossing events,@15# it is possible to
connect the ‘‘inter spike interval histogram’’~the residence-
time distribution, RTD, in the language of this paper! to the
output power spectral density. Here we propose to use
crossing statistics@16# in order to gain information on the
presence of small unknown target signals in a nonlinear
namic detector, taken to be a two-state system for the
mainder of this work.

We start by noting that in absence of any backgrou
noise, and with asuprathreshold bias signal amplitude, on
obtains the same residence times in each stable state,
two crossing events per period of the bias signal. With
small ~compared to the potential barrier height! target signal,
taken to be dc throughout this work, the potential is skew
at the outset of each measurement. Hence one obtains
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equal residence times in the two states. The residence t
can be computed analytically in some limiting cases~see
below and Ref.@9#!. In the presence of weak noise, havin
rms amplitude small compared to the bias signal amplitu
one obtains a spread in the residence times which must
be described statistically. For the case in which the bias
nal is suprathreshold, the residence-time distribution for th
right and left potential wells will be almost symmetric with
mean value, roughly corresponding to the deterministic re
dence time, approaching the distribution mode. In the
sence of the target dc signal, the distributions coincide. T
presence of the external target signal, assumed very s
compared to the potential barrier height, renders the poten
asymmetric with a concomitant difference in the mean re
dence times which, to first order, should be expected to
proportional to the asymmetry-producing target signal its
Hence, the difference between the mean residence time
the two states of the system provides an observable that
be used as a quantifier for detecting the presence of the ta
signal.

This procedure has some advantages compared to the
ventional readout scheme: it can be implemented experim
tally without complicated feedback electronics, with or wit
out the presence of bias signals~depending on the
experimental scenario, as mentioned above!. In fact, the dif-
ference in residence times is quantifiable even in theabsence
of the periodic bias signal, with only noise driving the sens
between its steady states. Although, as outlined earlier, p
tical considerations, e.g., observation times that depend
the relative magnitude of the noise standard deviation
the barrier height may limit the applicability of this proce
dure in some cases. The residence-time-based techn
works without the knowledge of the computationally d
manding power spectral density of the system output~in
most cases a simple averaging procedure on the system
put works just fine! and, finally, it performs well in the pres
ence of noise. We hasten to note that threshold statistics
derpin the class of ‘‘level-crossing detectors’’ that have be
available for a variety of applications for almost fifty year
The method outlined above has, in different forms, been u
in nonlinear sensors~especially sensors that have a hystere
output-input transfer characteristic such as those that ut
the dynamics in a ferromagnetic core in the signal detec
stage!, albeit without a clear understanding of the ramific
tions of sensor noise on the physics of the measurement@2#.

The aforedescribed ideas are quantified in the framew
of a mean field model for the evolution of the avera
magnetization in a ferromagnetic core. Detection of a
target signal is achieved by prebiasing the core with
suprathreshold time-periodic signal that we take to be sin
soidal, although other periodic wave forms may be be
suited for specific applications. We introduce one such w
form and compare the system response to this signal, to
response to a sinusoidal signal having the same freque
and a suitably defined equivalent amplitude. The object
the paper is to computêDT&, the ensemble-averaged~in the
presence of noise! difference in mean residence times for th
right and left wells of the potential function, when a small
signal causes an asymmetry. To lowest order,^DT& should be
0-2
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proportional to the target signal. Our calculations are carr
out in the context of experiments on a so-called advan
dynamic fluxgate magnetometer prototype, a roo
temperature magnetic field detector that is envisioned to
the residence-time readout scheme. Some preliminary
perimental results, obtained with a very simple laborat
prototype, are presented in the latter sections of the pa
The dynamics of the ferromagnetic core subject to
symmetry-breaking dc target signal, together with a kno
bias signal in background noise are examined, the ob
being a computation of the difference^DT& in the residence
times. However, we also recast the dynamics in terms of
more familiar standard-quartic~or Duffing! bistable potential
description. This system, usually analytically more tracta
than the complex dynamics that it mimics in this case,
been extensively utilized as a ‘‘test bed’’ for a plethora
nonlinear stochastic dynamic phenomena, and it can be
pected to yield results that are in good qualitative agreem
with those from systems described by more complex~but
still bistable! potential functions. Using this ‘‘equivalent
standard quartic representation, the issue of optimal ach
able accuracy and bounds thereon is also addressed,
stochastic perturbation theory. A family of estimation proc
dures that are asymptotically optimal for vanishingly sm
noise is developed using this theoretical machinery. Num
cal simulations have shown@18# that the estimators that ar
so developed and optimized for very small noise are a
applicable to larger noise intensities.

We find that while the standard quartic yields, for t
most part, the same qualitative behavior as the ‘‘soft’’~so
called because it has a shallower slope atx→` than the
much steeper Duffing or ‘‘hard’’ potential! potential function
that describes the ‘‘single domain’’ ferromagnetic sample
the mean field limit, there are some differences in the beh
ior predicted by the two potentials, and we highlight a
explain these differences where they occur. We also invo
where necessary, the simplest of all static threshold syst
with hysteresis, the Schmidt trigger~ST! @17#, as a tool to
obtain analytic results that are expected to show the s
qualitative behavior as more complicated dynamical tw
state systems. Finally, we note that the ideas in this pa
may be extended to tristable or multistable dynamic syste
e.g., the class of (F2)3 models discussed by Rao and Pan
@19#.

II. MODELS AND DETERMINISTIC DYNAMICS

The best-known system that exhibits hysteresis@21# is the
ferromagnet, usually described by Ising-type models@21,22#,
and exhibiting a phase transition to the paramagnetic s
when the temperatureT exceeds the Curie temperatureTc .
One may describe the ferromagnet by a Landau free en
function that is even in the order parameter~the magnetiza-
tion m); this potential energy function is, then, bistable in t
ferromagnetic phase, becoming monostable in the param
netic phase. The transition to monostability can be achie
by sweeping the temperature through the Curie point or
plying an external magnetic field that breaks the symmetry
the potential, causing one of the metastable states to di
01612
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pear when the field amplitude exceeds a critical value.
course, this begs the question of having a continuum mo
in which one may incorporate the dynamical behavior of
ferromagnet, including the effects of time-dependent exter
magnetic fields. This is accomplished through mean fi
theory @22# that allows one to use a master equation for
averagedmagnetizationx(t) and arrive at the dynamic equa
tion,

t
dx

dt
52x1tanhFx1h~ t !

T G[2
]U

]x
~x,t !, ~1!

wheret is a system time constant, andT, a dimensionless
temperature@20#. h(t) is an external magnetic field that ma
be time dependent, having the dimension ofm. We have also
expressed Eq.~1! in terms of the gradient of a potential en
ergy function~the analog of the free energy function referr
to above!,

U~x,t !5
x2

2
2

1

c
ln cosh@c$x1h~ t !%#, ~2!

where we setc5T21. The potential energy function~2! is
bistable forc.1. Dynamical hysteresis in the system~1! and
other systems~see below! with qualitatively similar potential
energy functions, withh(t) often taken to be time sinusoida
has been the subject of much recent study@23,24#. Coopera-
tive phenomena, e.g., SR, arising in the presence of ba
ground fluctuations@24,25# have also been examined in th
literature. The role of background fluctuations has been
nored in the derivation of Eq.~1!; however, in our ensuing
work, a fluctuation term will be added, phenomenologica
to the right-hand side~rhs!, in an attempt to capture the in
fluence of the noise floor.

The theoretical part of this paper is an attempt to ma
contact with laboratory experiments carried out with a cru
rendition of a fluxgate magnetometer, consisting of a fer
magnetic ring core wound with a primary~input! coil and a
secondary~output! coil. Details of the setup are given in Se
VII. We are interested in a ‘‘macroscopic’’ magnetic descri
tion of the fluxgate dynamics, rather than a detailed mic
magnetic description based on individual domain dynam
a detailed derivation of mean field dynamics of the form~1!
is not our intent. Rather, we use an equation of the form~1!
to model the dynamics of the entire core, assuming the
plicability of the mean field description. Such modeling h
been used in the literature@1,2# and we will find that the
model yields reasonably good~given that it is, at best, an
approximation to a detailed micromagnetic description of
domain dynamics! agreement with the experimental resul
thereby validating our description. Other collective a
proaches to the stochastic dynamics of aggregates of m
odomain ferromagnetic particles do exist in the literatu
@26#, usually starting from the Landau-Gilbert equations@27#
for a single-domain particle with thermal noise included; s
chastic resonance in such a system has also been stu
@28#.

As mentioned earlier, the model~1! will be augmented by
an additive noise term; in this section, however, we will f
0-3
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cus attention on the deterministic dynamics. In practice,
time constantt is very important, particularly in the presenc
of noise. If t is the smallest time scale in the system, i.
both the noise bandwidth~defined for Gaussian noise as th
inverse of the correlation timetc) and the bias signal perio
are well within the system bandwidtht21, then the device
essentially behaves like a static nonlinearity, with the le
hand side Eq.~1! equated to zero. Hence, the dynamics
reduced to following the dynamics of the noise plus the s
nal, as they traverse two thresholds, given essentially by
fixed points of the potential~2!. This procedure has alread
been described for bistable systems subject tosubthreshold
time-sinusoidal bias signals. It is convenient to start our
scription of the deterministic dynamics with this assumpt
and a suprathreshold bias signal having the formh(t)
5A sinvt ~periodT052p/v), since an analytic solution o
Eq. ~1! is not possible for large bias signal amplitudes. W
note that in practical devices, the bias signal is known,
controllable; hence we will assume, always, that the sig
parameters can be varied at will. We also remind the rea
that the bias signal plays a critical role in conventional re
out schemes, via the appearance of even harmonics o
frequencyv in the output power spectral density~PSD! of m
when the symmetry-breaking target dc signal is applied@8#.

In this work, we will assume the deterministic bias sign
h(t) to be suprathreshold, i.e., switching between the tw
stable attractors in the potential system, or between the s
thresholds when the device dynamics are irrelevant, is c
trolled by the bias signal, with one threshold crossing occ
ring during each half cycle. The exact time to thresho
crossing depends, of course, on the system and bias pa
eters. The variable of interest for the deterministic situatio
of this section is, then, the differenceDT5uT12T2u, the
difference between the residence times in the states of
two-state system. This quantity is clearly a function of t
system and bias parameters. It is zero when the two st
states are symmetric about the unstable fixed point, and
quires a finite value when a dc target signal breaks this s
metry. Figure 1 demonstrates the ‘‘rocking’’ of the potent
energy function~2! with a bias signalh(t)5A sinvt1« (v
52p/T0) when the dc offset« is zero and also when it is
finite. Of course, one could also examine the response
subthreshold bias signals, the SR scenario. We will not do
in this paper, however, since a large body of literature
ready exists on this subject@6,8#.

Consider first the simplest possible manifestation o
two-state system, ST@17#, characterized by a two-state ou
put and a hysteretic transfer characteristic. Its output res
one state as long as the input voltage is less than a thres
The switch to the other state is almost instantaneous~the ST
can be modeled as the limiting case of a dynamical sys
@29# with very small time constantt), occurring when the
input voltage exceeds the threshold. Let6b be the ST
thresholds, withh(t) thesuprathreshold time-sinusoidal sig
nal introduced above, and«(!b) a dc target signal whos
effect is to ‘‘displace’’ the sinusoidal signal upwards by
amount«. Then, crossings of the upper and lower thresho
occur ath(t10)1«5b and h(t20)1«52b, at timest1,20,
respectively. Thus,
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t105v21sin21S b2«

A D , t205v21Fsin21S b1«

A D1pG .
~3!

The next up crossing occurs att305t1012p/v, sinceh(t) is
suprathreshold and one can expect an up~or down! crossing
within every half cycle of the signal. ThenT15t202t10 and
T25t302t20, whence we obtain,

DTST052v21Fsin21S b1«

A D2sin21S b2«

A D G . ~4!

Defining a ‘‘sensitivity’’ via S(«)5dDT/d« we obtain

S~«!5
2

vA H F12S b1«

A D 2G21/2

1F12S b2«

A D 2G21/2J ,

~5!

which clearly increases with«, saturating at«̄5A2b. It is
instructive to note thatDTST0 vanishes when«50, and
DTST0→4«/Av for large ~compared to the threshold loca
tion! A. In the largeA regime, we can also show that th
residence timeT1→(1/v)(p12«/A), which approaches
T0/2 at very largeA as expected. A completely analogous s
of limiting values exist for the other residence timeT2 .

One may show that other~nonsinusoidal! bias wave forms
can lead to enhanced sensitivity under the appropriate op
tional conditions. One such wave form is obtained by add
a square wave having amplitudek1 and a triangular wave o
amplitudek2, both having frequencyv. The amplitudes of
the component signals are set according to the prescrip
k11k25A. The result is a periodic wave form~period T
52p/v) given by

FIG. 1. Mean field potential~2! (c56) with sinusoidal driving
signal having amplitudeA51 and periodT0. Solid lines depict
potential at timest50 ~upper left!, T0/4 ~upper right!, T0/2 ~lower
left!, and 3T0/4 ~lower right!. Dashed line depicts potential havin
additional dc offset«50.3.
0-4
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H~ t !5k11
2v

p S t2
1

2

p

v Dk2 , 0,t,
p

v

52k12
2v

p S t2
3

2

p

v Dk2 ,
p

v
,t,

2p

v
. ~6!

Figure 2 shows a sinusoidal signal having periodT05100
and wave form~6! having the same period. For wave for
~6!, it is clear that the parametersk1,2 determine whether
threshold crossings occur on the signal segments ha
slopeG5`, G,0, or G.0. In fact, it is evident that for
crossings of the upper threshold, at timet10

( i ) , one has
t10
( i )50 if k12k2>b2« with crossings occurring on th

G5` segment, andt10
( i ).0 for k12k2,b2«, for crossings

occur on theG.0 segment. For the lower threshold, th
crossing times aret20

( i )5p/v for k12k2>b1«, correspond-
ing to crossings on theG5` segment, andt20

( i ).p/v for
k12k2,b1«, corresponding to crossings on theG,0
segment.

For the cases when the threshold crossings occur on
GÞ` segments one can, analogous to the time-sinuso
case, obtain the upper and lower threshold crossing time

t10
( i )5

b2«2k11k2

k2

p

2v
,

t20
( i )5

b1«2k113k2

k2

p

2v
, ~7!

whence we obtain,

DT( i )5T0

«

k2
, k12k2,b2«,

DT( i )5T0

b1«2k11k2

2k2
, b2«<k12k2<b1«,

DT( i )50, k12k2.b1«, ~8!

FIG. 2. Sinusoidal signalA sin(2pt/T0) with A51, periodT0

5100, and two realizations of wave form~6! obtained via Eq.~6!.
k11k25A, andk250.05~top wave form!, k250.25~bottom wave
form!.
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and the sensitivityS( i )5]DT( i )/]« is obtained asS( i )

5T0 /k2 , S( i )5T0/2k2, and S( i )50 for each of the three
regimes defined in Eq.~8!. Throughout this paper we use th
superscript~i! to denote quantities~e.g., crossing and resi
dence times! associated with the bias wave form~6!.

Plotting the quantityDTST0 versus« for the two bias
signal wave forms considered, shows immediately that
bias signal wave form~6! can yield a better separationDT
for low values of the target signal. This will be illustrated v
simulations in Sec. IV.

Finally, we introduce an alternative realization of the d
namics~1! in terms of the simpler~from an analytic stand-
point! Duffing or ‘‘hard’’ potential,

dx

dt
52

]Ud~x,t !

]x
, ~9!

with the potential function defined as

Ud~x,t !52
a

2
x21

b

4
x42@«1h~ t !#x, ~10!

a,b being constants to be determined. In the absence of
external signals@«,h(t)50# this potential has an unstabl
maximum at 0, and stable minima atxdp05Aa/b52xdm0,
with the height of the potential barrier given byDUd0
5a2/4b. For the ‘‘soft’’ potential ~2! the corresponding
quantities may readily be obtained via expansion about
limiting values for largec. We then obtain an unstable max
mum at 0, with minima at xp0511Dp52xm0 , Dp
5(tanhc21)/(12c sech2c). The barrier height isDUp0

5uxp0
2 /22(1/c)ln coshcxp0u. We then set the parametersa,b

in Eq. ~10! by demanding that the extrema, and hence
energy barrier heights, of the potentials~2! and~10! coincide
when «5h(t)50. This readily leads to the ‘‘equivalent
hard potential~10! with the definitions

a5
4DUp0

xp0
2

, b5
a

xp0
2

. ~11!

The two potentials now have the same extrema and ba
height in the signal-free case; of course their slopes~for x
→6`) are quite different. This difference leads to chang
that are quantitative only, when we examine the respons
both models to the target signal in the presence of a n
floor and the periodic bias signal. Hence, with the definitio
~11!, the hard potential affords a model that captures mos
the essential physics of this class of devices. This is part
larly convenient from the standpoint of analytic calculation
plus it allows us to draw on the huge body of literature
various aspects of the noisy nonlinear dynamics of these
vices. We note that the energy barrier separating the st
steady states, decreases with decreasingc. For c,1, the
parabolic term in the potential~2! starts to dominate, and th
dynamics approaches linearity. The case of very small ene
barrier is relevant when one considers, for example, ‘‘so
ferromagnetic cores in which one observes frequen
dependent hysteresis loop areas, as well as cores tha
approximately ‘‘single domain’’@30#. In these cores, the hys
0-5
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teresis loop is very narrow, the energy barrier is very sm
and they can be well approximated by the potential~2! with
c'1.

Consider now, the inclusion of a small~with respect to
the barrier height! asymmetrizing dc signal«, together with
a known bias signalh(t)5A sinvt that we take to be
suprathreshold. The hard potential~10! develops points of
inflexion at xf dp5Aa/3b52xf dm , and the threshold cross
ings occur when«1h(t)52axf dp1bxf dp

3 with a similar
condition involving the other inflexion pointxf dm . The rhs
of this expression is2xc[2A4a3/27b with the opposite
~i.e., plus! sign corresponding to a crossing of the inflexi
point xf dm . It is important to note that we are assuming t
bias amplitude to be large enough that the signal domin
the dynamics, so that the Duffing dynamics~9! can be ap-
proximated by the simple threshold dynamics of the fo
considered in the ST description above. The cross
‘‘thresholds’’ are, thus, given by the points of inflexion. In
procedure completely analogous to that utilized in the ST,
obtain the difference in residence times for the equival
system~9! in the absence of noise,

DTd05
2

v Usin21S xc1«

A D2sin21S xc2«

A D U. ~12!

An analogous expression for the residence-time differe
may be obtained for the mean-field dynamics~1! under the
same conditions, i.e., assuming the system and signal pa
eters to be such that the system may be well approximate
a static threshold device. The points of inflexion are atxf sp

5A(c21)/c52xf sm and we obtain for the difference i
residence times,

DTs5
2

v
usin21gp2sin21gmu, ~13!

where gm,p[$c21tanh21xfsm,p2xfsm,p2«%/A. Analogous ex-
pressions for the wave form~6! may be derived analytically
we defer these calculations to a later section.

In the following sections we compute and analyze
mean residence-time difference in the presence of sys
noise. As mentioned earlier, we expect the expressions~4!,
~12!, and ~13! to provide good approximations to the me
residence-time difference when the known bias signal is w
suprathreshold and the noise and target signal are sm
Throughout this work, we will consider thec.1 case, cor-
responding to bistability in the potential function~2!. It is
worth noting, however, that temperature fluctuations~which
can reasonably be expected to occur in applications! lead
directly to fluctuations in the barrier height and the locatio
of the minima, since these quantities depend on the p
mater c. Hence, we may encounter situations wherein
potential switches between monostability and bistability
the time scale of the fluctuations. This scenario is not trea
here; rather it will be addressed in a forthcoming publicati

It is very important to reiterate that the results of th
paper hold true for a very large class of dynamical syste
those whose dynamics are underpinned by a bistable~or even
multistable! potential energy function. The expressions f
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the deterministic residence-time difference,DT, can be ana-
lytically derived only when we ignore the~internal! system
dynamics invoking the largeA limit, wherein we can simply
approximate the bistable dynamics by a~nondynamic!
Schmidt trigger with appropriately computed threshold s
tings. We now make the~deterministic! treatment of this sec-
tion more realistic, by introducing a noise floor.

III. LEVEL CROSSING DYNAMICS IN THE PRESENCE
OF A NOISE FLOOR

We have noted that in the absence of the target sig
(«50) and for the noiseless case, the bias signal periodic
‘‘rocks’’ the potential ~Fig. 1!. If the signal amplitudeA ex-
ceeds the deterministic switching threshold, the state p
will make, successively, transitions to the two stable state
deterministic~well-defined! times separated by a half cycl
of the bias signal; these switch events are quite regular.

Now consider the noisy case; throughout this work
will assume that the noise is Gaussian and correlated, i.e
is derived from an Ornstein-Uhlenbeck process@31#,

ż~ t !52tc
21z1sF~ t !, ~14!

whereF(t) is a Gaussian delta-correlated noise having z
mean and correlation function̂F(t)F(t8)&5d(t2t8). We
readily obtain for the correlation function of the colore
Gaussian noise,̂ z(t)z(t8)&5^z2&exp@2ut2t8u/tc#, where
^z2&5s2tc/2. We also assume that the signal frequencyv is
well within the noise band, i.e., the noise is widebandvis a
vis the signal. This is a reasonable assumption, and it
become evident that it may be possible to somewhat mitig
problems arising from the noise statistics by adaptively
justing the bias signal amplitude~vis a visthe noise floor and
barrier height! in real scenarios.

For «50 andA suprathreshold~this is well represented
by the conditionAx0 /DU.3/2 wherex0 denotes the loca-
tion of a stable fixed point of the potential!, the threshold
crossings to the stable states are controlled by the signal
the noise does introduce some randomness into the inters
intervals. The result is a distribution of residence times~the
RTD! whose variance increases with increasing noise int
sity. For A far above the deterministic switching thresho
and moderate noise, the RTD assumes a symmetric na
~almost Gaussian! shape with a mean value~the mean cross-
ing time! nearly the same as the most probable value
mode. The mean values~or modes, in this case! of the his-
tograms corresponding to transitions to the left and ri
stable states coincide. As the signal amplitude decreases
RTD starts to develop a tail so that the mean and mode
separated. The appearance of the tail is an indication of
growing role of noise in producing switching events, a
though thesuprathreshold signal is still the dominant mech
nism. When the signal amplitude falls below the determin
tic crossing threshold, the crossings are driven largely by
noise. The RTD can assume a characteristic multipea
structure@13,32# that shows ‘‘skipping’’ behavior since the
noise can actually cause the crossings to occur at diffe
multiplesnT0/2 (n odd! of the half period, and the stochast
0-6
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resonance scenario comes into play@6# through a synchroni-
zation of characteristic time scales in the system. The n
determines the tail of the RTD, and introduces a~symmetric!
broadening, or dispersion, in individual lobes of the RT
since the individual crossing events do not always occur p
cisely at timesnT0/2. We will not consider this~so-called
subthreshold! case in the current paper, limiting ourselves
the suprathreshold bias signal case only.

We reiterate that with zero target signal, the crossing
tistics to the left or right minimum of the potential, are ide
tical, with coincident RTDs, as should be expected. Ho
ever, let us now consider the case of a nonzero but sm
target signal,«x0!DUp0, that is sufficient to skew the po
tential ~Fig. 1! but not remove one of the minima, in th
presence of Gaussian noise and the bias signalA sinvt. Be-
fore presenting simulation results, we comment on some
tures that we should expect to observe in the RTDs.

~1! The potentials~2! and ~10! are nowa priori skewed
even forA50. Hence, the mean residence times in the t
stable states will be different. Denote these times by
ensemble-averaged quantities^T1&,^T2&, respectively.

~2! For very large bias signal amplitudes and moder
noise intensity (s2<DUp0 ,DUd0), the RTDs are two well-
separated symmetric near-Gaussian distributions cent
about modes that coincide with their means^T6&. For signal
amplitudes much larger than the rms noise amplitude,
distributions tend to coincide. As the noise intensity
creases, the distributions become broader and, as the
signal amplitude drops to the deterministic switching thre
old and below, start to develop tails with separated mo
and means.

~3! The separation̂DT&5u^T1&2^T2&u of the mean val-
ues yields a direct measure of the asymmetry-producing
get signal. It can be calculated for the zero noise case~Sec.
II !, as well as with weak noise and bias signal amplitudeA
that is wellsuprathreshold. We will find in fact~Sec. V! that,
in the largeA/s limit, ^DT& is well approximated by its
deterministic analog, and is proportional to the asymmet
ing signal «. Theoretical calculations of this quantity a
currently underway, but numerical simulations are shown
low. For ana priori balanced device~i.e., symmetric poten-
tial function!, in fact, the existence of a nonzero^DT& can be
taken as a sign of the presence of the target signal.

~4! In the presence of increasing amounts of noise
RTDs tend to merge and their mean values~which are now
well separated from the modes! may also be difficult to dis-
tinguish, sincê DT&→0 with increasing noise. However, in
creasing the bias signal amplitude~this could be done adap
tively in a real application! once again leads to the signal
the dominant mechanism for crossing events and the di
butions ‘‘sharpen’’ somewhat and have less overlap, bec
ing more resolvable, even though the separation^DT& may
actually decrease.

~5! For subthreshold bias signals, the crossing events
noise dominated and the RTDs multimodal in general. T
stochastic resonance@6# scenario may be exploited to yiel
better signal processing. This scenario has been extens
discussed in the literature; we do not dwell on it here.
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~6! For very special situations, primarily those in whic
there is a small amount of noise, one can carry out the ab
procedure with a very weak bias signal. In this case
RTDs for each potential well are almost unimodal with lo
tails. The mean values and modes are, again, depende
the target signal; however, in this case, the slopes of
long-time tails of the density functions are different for th
two wells, and this difference can also be used as an ide
fier, if needed, of the target signal. The limiting case of ze
bias signal has also been studied@9#; our studies indicate tha
this operating mode may be optimal even for small tar
signals«, with ^DT& proportional to«. This operating mode
relies on the presence of background noise that is str
enough to initiate interwell switching events without th
presence of asuprathreshold bias signal. Of course, in pra
tical applications, the presence of assorted~often non-
Gaussian and nonstationary! noise sources, as well as rea
out issues, could make the zero bias signal mode a possib
for only very specialized scenarios. For these, more com
cated, noise backgrounds, the renewal assumption for
crossing events cannot be expected to hold. This opera
mode may be particularly well suited for application
wherein the potential barrier height can be adjusted during
experiment. It does afford the attractive possibility of signi
cantly reduced onboard power.

~7! Our calculations to date indicate that a sinusoidal b
signal is not always optimal; in some operational scenar
better sensitivity may be obtained by using other signal w
forms, e.g., wave form~6! or a triangular wave form, which
have a stepwise linear behavior. An exhaustive study al
these lines is beyond the scope of this paper, however, w
present results~see following section! based on a bias signa
of the form ~6!. In general, however, the choice of optim
bias wave form is very dependent on the system and sig
parameters in a given operating scenario.

Note that in an experiment, under any of the above s
narios, it isnot necessary to actually compute the RTDs. O
simply accumulates crossing times for the two saturat
states of the hysteresis loop, and computes the arithm
mean for each set of residence times. Then, an impor
issue is the amount of data~dependent on the response tim
of the electronics!, the amount of time one can ‘‘look’’ at the
target signal, as well as the bias frequencyv required to
obtain reliable estimates of^DT&. It is clear that increasing
the bias signal amplitude, in order to better discriminate
RTDs, can lead to enhanced detection probabilities. In
context, it is important to point out that the above techniq
may be implemented with bias signal amplitudes that are
substantively larger than the potential barrier height, and a
with relatively low bias frequencies; this is true particular
for the new ‘‘single-domain’’@30# class of magnetic fluxgate
sensors that have mainly Gaussian correlated noise and s
1/f risers. In practice, however, one should expect to c
front a tradeoff between the bias signal amplitude~this is a
function of the on-board power in a practical sensor! and the
concomitant degree of resolution of the peaks of the his
grams, and what is necessary for a reliable estimate, usu
with a limited observation time, of the target signal fro
^DT&.
0-7
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IV. SIMULATIONS

We now show the results of numerical simulations carr
out on the original mean-field model~1! as well as the
equivalent quartic model~9!, using a sinusoidal bias signa
as well as wave form~6!, with a Gaussian noise backgroun
present in all cases. The noise is assumed to enter addit
on the rhs of both models. We usec54 for all simulations;
this completely defines both~bistable! potentials via Eqs.~2!
and ~10!. The value ofc remains constant throughout th
work, it being assumed that this parameter cannot easily
adjusted in experiments. Note that real devices usually h
a time constantt that sets the device bandwidth. The tim
constantt of real devices is usually about 1028, so that, in
the simulations, the signal frequency and noise band are
adjusted to lie well within the instrument bandwidtht21.
For theoretical calculations, this implies that one may rep
sent the device as a ‘‘static’’ nonlinearity, analogous to o
approach in Sec. II, and simply track the noise and sig
dynamics as they pass through the system. Under these
ditions, the results for different signal frequencies~as long as
v/2p!t21) are very similar; for frequencies larger tha
t21, however, dynamic hysteresis effects can become m
important. In our simulations, we consider a dynamical
vice wherein the time-derivative term cannot simply be d
carded; we taket51. Finally, we set the correlation time o
the noise astc50.1 and the bias signal periodT05100, so
that the bias signal is within the noise band. In this work,
do not investigate the effects of noise color, the subject o
huge amount of attention in the literature~see, e.g., Ref.
@33#!; this analysis is deferred to a later publication.

The results of simulations, wherein we examine the
fects of changing the noise variances2, the bias amplitude
A, and the~dc! target signal«, are shown in Figs. 3 and 4. I
both cases, the top row shows the probability density of r

FIG. 3. Residence-time density vs normalized time for no
variance parameterss250.05,0.1,1.0~top to bottom! for mean field
model (c54) with bias signal of amplitudeA51.0 and periodT0

5100, and asymmetrizing dc signal«50.1. Left panel: sinusoida
driving signal. Right panel: wave form~6! with k11k25A, k1

52k2 ~note the different scale!. Lower panels: mean residence-tim
difference vss2 for changing target dc signal.«50.3 ~top!, 0.2
~middle!, and 0.1~bottom!.
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dence times computed using a sinusoidal bias signal~left
panel! and wave form~6! ~right panel!, as a function of the
normalized timet/T0. For clarity, results are shown only fo
the mean field model~1!; in all cases, however, we obtai
excellent agreement when the simulations are carried ou
ing the equivalent quartic model~10!, with parameters com-
puted via Eq.~11!. The bottom row of each figure shows th
residence-time differencêDT& as a function of the noise
variances2. The bias amplitudeA is suprathreshold in all
cases. We remind the reader that the case of zero bias s
has already been discussed in Ref.@9#, and the case ofsub-
threshold bias signal~the SR scenario! has also been exten
sively discussed in the literature; we do not address th
situations here. The following features are observed.

~1! Increasing the noise variance leads to an increas
the standard deviation of the density function; the two co
ponents of the RTDs broaden and, simultaneously, l
height at their modes so that the normalization is preserv
As the bias amplitudeA approaches the deterministic switc
ing threshold, one expects the noise to play an increasin
important role in switching events; this would lead to a tail
the density function, and a separation of the mean value f
the mode. In all cases, the distributions remain symme
aboutT0/2, as expected.

~2! Wave form~6! leads to a larger separation of the me
values, particularly at low to intermediate noise intensit
~see lower panels!. Hence, it may be more convenient to u
this bias wave form for specific operational situation
wherein resolution is a problem and signal observation tim
are constrained.

~3! While the sinusoidal bias signal clearly has a fix
wave form~specified by its amplitude and frequency!, wave
form ~6! can be adjusted by choosing the relative values
k1 andk2, subject to the constraintk11k25A. Hence, it is
worth the digression, at this point, to investigate the value
^DT& as a function of the parametersk1 andk2 in Eq. ~6!. In
order to compare this value with the value obtained for
sinusoidal bias signal we keep the conditionk11k25A. In
Fig. 5 we shoŵ DT& as a function ofk2 for different values

e FIG. 4. Same as Fig. 3, but with noise variance parameters2

50.1,«50.1, and bias amplitudeA51.6 ~tallest pair!, 1.2 ~middle
pair!, and 0.8~lowest pair!. Curves in lower panels correspond
A50.8 ~top!, 1.2 ~middle!, and 1.6~bottom!.
0-8
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of the noise intensity together with the value obtained for
sinusoid. The dynamical system described by the ‘‘soft’’ p
tential ~2! is simulated, so that only one~internal! adjustable
parameterc changes the shape of the potential. The d
points represent the theoretical prediction obtained by
proximating the double well potential with the ‘‘equivalen
~see Sec. II! Schmidt trigger system,

^DT&50, k2,
1

2
~A2b2e!,

^DT&5
2p

v

b1e2A12k2

2k2
,

1

2
~A2b2e!<k2<

1

2
~A2b1e!,

^DT&5
2p

v

e

k2
, k2.

1

2
~A2b1e!, ~15!

where we have rearranged the result in Eq.~8!, and set the
thresholdb as in Eq.~13!. The nonmonotonic behavior o
^DT& as a function ofk2 can be readily understood by usin
the same argument presented for the derivation of Eq.~8!. It
is interesting to note that there exists an optimum value
k2 and that by a proper selection of the combinationk1 ,k2
the wave form in Eq.~6! can outperform~in terms of^DT&)
the more conventional sinusoidal bias. In fact, one obse
that k25A ~a purely triangular bias signal! most closely ap-
proximates the sinusoidal wave form. The values of^DT& for
the sinusoidal bias signal with the noise intensities used

FIG. 5. Effect of varying parameters in thesuprathreshold bias
wave form ~6!. Normalized mean residence-time difference vsk2

for dynamical system described by Eqs.~1! and ~2!. c54,A51,k1

1k25A, T05100,«50.1. Solid curves correspond~left to right! to
noise intensitys250,1.0,10.0. Dotted curve denotes result obtain
via ‘‘equivalent’’ deterministic (s250) threshold model~15!. Hori-
zontal line denotesDT for sinusoidal bias wave form with sam
amplitude and frequency, and zero noise; lines correspondin
different noise intensities~for sinusoidal driving case! are indistin-
guishable from deterministic case on scale of the figure.
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the figure are very close~indistinguishable on the scale of th
figure! to the horizontal line~corresponding to the determin
istic case!. This is to be expected since the curves genera
using wave form~6! also converge to the same value at lar
k2. With decreasing noise intensity, the curves approach
deterministic case~the largeA/s limit !, and the optimalk2
is then given byk2c'(A2b2«)/2. The effect of changing
c, while keeping all the driving parameters fixed, is
change the barrier height and the separation of the pote
minima. For decreasingc, the barrier height decreases, th
curves in Fig. 5 tend to converge towards the determini
results, i.e., the zero noise case, more rapidly. In addition,
optimal value ofk2 moves towards lower values and th
maximal separation̂DT&, at the optimalk2, is lower.

~4! At very large noise,̂ DT& approaches zero. This i
expected, with the distributions overlapping more and m
with increasing noise. The approach to zero is slower
larger target signals because of the larger asymmetry in
potential that they bring. Also, the details about the poten
and the bias signal wave form, become increasingly irr
evant ass2 increases.

~5! At vanishingly small noises,̂DT& is almost flat, for
small target signals, and shows a monotonic decrease
increasing noise. At zero noise~not shown on the plots! the
curves would intersect the vertical axis at the determinis
differenceDT.

~6! Increasing the bias signal amplitude reduces^DT&
even as it renders the distributions somewhat more res
able for large noise~see Fig. 4!. This indicates that in a
practical application, it may not necessarily be of benefit
apply an extremely large bias signal~see the following sec-
tion!. Our simulations show that bias signals having amp
tude not much larger than the barrier height will suffice.
course, exceptional cases, e.g., large noise, or non-Gau
and/or nonstationary noise, may necessitate the applica
of larger drive signals. An important point to be made here
that the~possibly detrimental! effects of a large noise back
ground may be reduced—but not entirely eliminated—
carefully increasing the bias signal. This procedure can a
render the device response somewhat immune to the n
statistics. Such an ‘‘adaptive’’ control could be achieved
e.g., a neural network in practical situations. Using wa
form ~6! leads@see Fig. 4# to a somewhat cleaner resolutio
of the modes of the RTDs with increasing bias amplitud
and, as already noted, the difference in mean residence t
is actually greater than in the sinusoidal driving case, w
the appropriate selection ofk2. The fact that wave form~6!
is locally linear where the threshold crossings occur, contr
utes to the far better resolution of the residence-time diff
ence^DT& that it brings. In all cases, a very large bias sign
has the effect of effectively linearizing the response, with
residence-time densities merging into a single peak cent
at T0/2.

~7! In the limit of low noise andsuprathreshold bias am-
plitude, one expects the simple ‘‘nondynamical’’ picture pr
sented in Sec. II to yield a very good description of t
dynamics, with the mean residence times well approxima
by the deterministic expressions~12! and~13!. A simple cal-
culation in the following section will demonstrate this poi
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nicely. From a practical standpoint, the fact that one can
the low-noise case, computea priori the expected observabl
^DT& via the determinsitic quantity for given target and bi
signals, can be of considerable utility in practical applic
tions.

~8! The difference in meanŝDT& is proportional to the
target signal, provided the latter is weak@9#. The smallest
target signal strength («50.1) used in the figures is rela
tively strong so that this relationship may be only appro
mately true, with higher-order terms~in «) giving a nonva-
nishing contribution tô DT&.

~9! As already noted, but not shown in the figures, the t
descriptions~mean field and equivalent quartic! give very
similar results, with some quantitative differences attrib
able to the approximation~11!, wherein the mean field po
tential is replaced by a ‘‘harder’’ potential~the quartic
model!. The relevant observablêDT& is virtually identical
for both models except for some minor differences, pa
attributable to simulation difficulties, at very low noise inte
sities.

Finally, we comment here on an interesting effect,reso-
nant trapping~RT! @34#, which is observed when the bia
signal amplitude is just barely above the determinis
switching threshold. In this regime, the noise can actua
cause the system to miss a threshold crossing; the state
remains trapped in one of the stable attractors~or near the
unstable point of the potential! by the noise. This effect lead
@9# to a maximum in^DT& at a critical noise intensity; the
effect ~which shouldnot be confused with the substance
Fig. 5! disappears as the bias signal amplitude is increa
to the point where the crossings are, predominantly, dri
by the signal. Clearly, RT is a mechanism that affords
possibility of using even weaker bias signals—usually de
able because of power constraints—while exploiting the
trinsic noise floor of the device. A very detailed study of R
in this class of systems will be published in a forthcomi
paper.

In the following section, we present an attempt to char
terize performance via a signal-to-noise ratio~SNR! that we
may compute analytically in the limit of small noise, b
asymptotic expansions. We also comment on the notion
finite observation timeTob .

V. TOWARDS PERFORMANCE OPTIMIZATION

Following the results of the preceding section, one m
ask the logical question: what is the optimal detector c
figuration for the detection of a given target signal in a no
background? As discussed in earlier work@9#, the ~theoreti-
cal! largest^DT& is obtained for zero bias signal. Howeve
in real applications this observation must be tempered by
constraint of finite observation timeTob . The noise intensity
should be high enough to allow switching events so that
system yields acceptable sensitivity and SNR without
bias signal. Otherwise, a bias signal must be applied. In
following we introduce a quantifier to take into account bo
the DT amplitude and the observation timeTob and discuss
the optimal bias signal for given target amplitude, bac
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ground noise intensity, and potential barrier height.
We start by assuming that we have collectedN samples

for each of the residence timesTn6 . The mean values of the
two RTDs arê Tn6&; as discussed above, these may be co
puted directly from the crossing times data sets~the subscript
n denotes an experimental or simulated quantity!. The actual
mean valueŝT6& are then given by

^T6&5^Tn6&1^dTn6&, ^dTn6&5
sTn6

AN
, ~16!

where sTn6
is the standard deviation of each distributio

The second term represents the uncertainty inherent in
measurement process. Then the mean difference in resid
times may be written in terms of the experimentally obtain
quantities,

^DT&5^DTn&1d^DTn&, ~17!

where ^DTn&5^Tn1&2^Tn2&. We can easily obtain from
Eq. ~16!,

d^DTn&5AdTn1
2 1dTn2

2 5AsTn1

2 1sTn2

2

N
'sTn

A2/N,

~18!

where we setsTn1
'sTn2

5sTn
, since the distributions are

identical with the separation of means being the only ma
festation of the presence of the target signal.

Now, we introduce an output SNR via the definition

R5
^DTn&

d^DTn&
5

^DTn&
sTn

AN

2
. ~19!

We assume that we are given a finite observation timeTob
52N@(T11T2)/2#, whence we can obtain

N5
Tob

T11T2
5

Tob

^DTn&12^T2&
'

Tob

2^T2&
. ~20!

Hence, we finally obtain for the SNR~note that it is a func-
tion of all the system parameters, and, specifically of the b
signal amplitudeA),

R5
1

2

^DTn&
sTn

A Tob

^Tn2&
. ~21!

It is of interest to compute and analyze the SNR~21! as a
function of the bias amplitudeA and other system param
eters, as a means to optimizing performance. The sim
threshold description of the ST as well as the potential-ba
models~mean field and equivalent standard quartic! affords
us an analytic computation of the SNR, which we now d
scribe. It is most important to reiterate, at this point, t
stringent constraints on our use of the threshold descript
~4!, ~12!, and ~13!. For all three models, the noise standa
deviation must be small compared to the threshold ‘‘heigh
with A beingsuprathreshold. In addition, the replacement
the dynamics~1! and ~9! by the simple static threshold de
0-10
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scriptions that lead to the deterministic results~12! and ~13!
are predicated on a bias signal amplitude that issuprathresh-
old. To get an analytical estimate of the SNR~21!, we resort
to our simple ST model described in Sec. II. We assume
noise floor to be small~compared to the threshold setting!,
and to manifest itself in a fluctuating threshold with me
valueb; the fluctuations are assumed to be Gaussian,

P~z!5
1

A2ps2
expH 2

~z2b!2

2s2 J . ~22!

Let us first consider the case of sinusoidal bias signal.
suming that we start att50, the firstt1, to the upper thresh
old ~at 1b) is now a random variable; its probability may b
readily computed@16# via a change of variables, wherein th
mean crossing time is well approximated by the determin
tic crossing time as derived in Sec. II,

P~ t1!5
vA

A2ps2
cosvt1expH 2

A2

2s2
~sinvt12sinvt10!

2J ,

~23!

which is normalized to unity over the interval 0<t1<T0/4,
which contains the first crossing to the upper threshold, si
the signal is wellsuprathreshold. Note thatP(t1)50 outside
this interval. In an analogous manner, we obtain the fi
crossing time probability for the lower threshold,

P~ t2!5
vA

A2ps2
cosvt2expH 2

A2

2s2
~sinvt22sinvt20!

2J ,

~24!

normalized to unity inT0/2<t<3T0/4. Note that these den
sity functions tacitly assume a determinstic threshold cro
ing picture of the form described in Sec. II. The bias sig
must be wellsuprathreshold and the noise intensitys2 also
should be small compared to the threshold height. In Eq.~23!
and ~24!, the deterministic crossing timest1,20 are given by
Eq. ~3!.

In terms of the density functions~23! and ~24!, we may
write formal expressions for the mean crossing times^t1& th
and ^t2& th , the subscript denoting the theoretical~in this
case, approximate! quantity,

^t1& th5E
0

T0/4

P~ t1!t1dt1 ~25!

and

^t2& th5E
T0/2

3T0/4

P~ t2!t2dt2 . ~26!

The theoretical difference in residence times is then,

^DT& th5^T1& th2^T2& th52~^t2& th2^t1& th!2T0 ,
~27!
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in terms of the definitions~25! and~26!. The standard devia
tion in the denominator of Eq.~21! is computed via the sec
ond moment oft1,

sTn
'A2~^t1

2& th2^t1& th
2 ![A2s t1

2 , ~28!

and the remaining term in the denominator of the square
factor in Eq.~21! is replaced by the difference in the mea
crossing times.

The integrals above must be computed numerically,
general. We then readily observe that in the limit of sm
noise variance and large bias amplitude, the averaged q
tities are well approximated by their deterministic count
parts~defined in Sec. II!,

^t1,2& th't1,20, ^DT& th'DTST0 , ~29!

where the deterministic residence-time difference is given
Eq. ~4!. We may also, in the regime of validity of the corre
spondences~29!, approximately evaluate the integrals~25!
and ~26! using a second-order Laplace expansion@35#, in
which we retain terms uptoO(s2) only. We then obtain

^t1& th't101
s2

A2
secvt10G10~ t10!1h.o.t.,

^t2& th't201
s2

A2
secvt20G20~ t20!1h.o.t., ~30!

where h.o.t. denotes higher-order terms. For the variances t1
2

we obtain

s t1
2 '

s2

A2
secvt10$G2~ t10!22t10G10~ t10!%, ~31!

where we have defined,

G10~ t10!52
f 1

(2)

2f1
(2) ~ t10!1

f 1f1
(4)

8@f1
(2)#2

~ t10!1
f 1

(1)f1
(3)

2@f1
(2)#2

~ t10!

2
5 f 1@f1

(3)#2

24@f1
(2)#2

~ t10!, ~32!

G20~ t20!52
f 1

(2)

2f2
(2) ~ t20!1

f 1f2
(4)

8@f2
(2)#2

~ t20!1
f 1

(1)f2
(3)

2@f2
(2)#2

~ t20!

2
5 f 1@f2

(3)#2

24@f2
(2)#2

~ t20!, ~33!

G2~ t10!52
f 2

(2)

2f1
(2) ~ t10!1

f 2f1
(4)

8@f1
(2)#2

~ t10!1
f 2

(1)f1
(3)

2@f1
(2)#2

~ t10!

2
5 f 2@f1

(3)#2

24@f1
(2)#2

~ t10!, ~34!
0-11
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and

f 1~ t !5t cosvt, f 2~ t !5t2cosvt,

f1~ t !52
1

2
~sinvt2sinvt10!

2,

f2~ t !52
1

2
~sinvt2sinvt20!

2. ~35!

In the above expressions, the superscripts~e.g.,f (m)) denote
the mth time derivative.

The mean crossing times~30! agree very well~in the limit
of small s/A) with the values obtained by numerical
evaluating the integrals~25! and ~26!. Good agreement is
also obtained between the standard deviations t1

and its nu-
merically obtained counterpart. In fact, a glance at Eqs.~30!
shows that at large signal amplitude~and/or small noise in-
tensity!, the crossing times approach their deterministic v
ues t1,20; in turn, these behave as 1/A for large A. In this
regime of operation, the residence-time density functio
~23! and ~24! collapse into Gaussians having the form

P~ t1!'
1

A2pSs
2

expH 2
1

2Ss
2 ~ t12t10!

2J , ~36!

which is normalized to unity on@2`,`# and whereSs
2

5s2/A2v2, a ‘‘dressed’’ variance that is seen to decrea
rapidly with decreasings and/or increasingA; the simula-
tions of Sec. IV have already shown this behavior. A cor
sponding expression is obtained forP(t2). Note that simple
differentiation of the densities~23! and ~24! shows the
modes approaching the mean values in the largeA/s limit.
Of course we have already observed@Eq. ~30!# that the av-
erage crossing times approach their deterministic coun
parts in this limit.

In the Gaussian limit, we can find a theoretical express
for the SNR. We start by computing the residence-time d
sity function for the up state for which individual residen
times are denoted byTu5t22t1 , t1,2 being the individual
crossing times. The density function of the residence time
obtained via the convolution

P~Tu!5E
2`

`

P1~Tu2t2!P2~ t2!dt2 , ~37!

which after some manipulations yields

P~Tu!5
1

A4pSs
2

expH 2
1

4Ss
2 ~Tu2t101t20!

2J . ~38!

An analogous expression may be computed for
residence-time density function in the down state. Then,
ing expression~4!, settingsTn

2 52Ss
2 , and takinĝ T1&5t20

2t10 @with the deterministic crossing times defined in E
~3!#, we obtain the theoretical SNR as
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R5
1

2

Av

s

DTST0

AT02DTST0

ATob. ~39!

It is instructive to repeat the theoretical calculations us
wave form ~6! as the bias signal. One may compute t
residence-time density function in a manner analogous to
above. Starting with expression~22! for the noise probability
density function, we may obtain the crossing times dens
functions via a simple change of variables,

P~ t1,2
( i ) !5

1

A2pS i
2

expH 2
1

2S i
2 ~ t1,2

( i )2t1,20
( i ) !2J , ~40!

which is also normalized to unity on@2`,`#. Here, we
have introduced, as we did for the sinusoidal bias c
above, the ‘‘dressed’’ variance parameterS i

2[p2s2/v2k2
2 .

Denoting byTu
( i )5t2

( i )2t1
( i ) the residence time in the up stat

one obtains its density function in a manner analogous to
used above for Eq.~38!,

P~Tu
( i )!5

1

A4pS i
2

expH 2
1

4S i
2 ~Tu

( i )2t10
( i )1t20

( i )!2J ,

~41!

which is Gaussian having meant20
( i )2t10

( i ) and variance 2S i
2

52p2s2/v2k2
2 . We readily observe that̂DT( i )&→0 and

t20
( i )2t10

( i )→T0/2 when«→0, as expected. The separation b
tween the peaks in the residence-time density function
given by Eq.~8!, exactly as predicted for the noise-free ca
The SNR~21! may now readily be estimated for this wav
form. We find

R5
1

2

k2v

ps

DT( i )

AT02DT( i )
ATob. ~42!

The similar structure of Eqs.~39! and ~42! should be noted.
Note, also, that the SNR behaves likeA/s for the sinusoidal
wave form, and likek2 /s for the alternate wave form~6!.
Hence, one obtains a performance enhancement with
creasing noise intensity for both signal wave forms, as mi
be expected. For the sinusoidal bias signal, one can incr
the SNR further, by increasing the bias amplitudeA, how-
ever, this must be weighed against the requirement of lo
power consumption as well as the resolvability of^DT&.
With increasingA, ^DT& decreases and the lobes of the RT
converge to a single sharp peak atT0/2. For wave form~6!
the situation is more complex, as seen in Fig. 5; given
noise floor, the response might be expected to increase
increasingk2, peaking at the critical value ofk2c'

1
2 (A2b

2«), and then decreasing. The SNR in both cases is pro
tional to ATob; increasingTob leads to improved statistics
although operational constraints in specific applications m
limit its magnitude.

It is of interest to actually find some measure of compa
son between the readout schemes that employ the RTD
described in this work, and more conventional read
schemes~see Sec. I! based on the output PSD. Such a co
0-12
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parison is possible in the context of a rigorous statisti
analysis of the device response; we address this in the
lowing section.

VI. RESIDENCE-TIME ASYMMETRY OR POWER
SPECTRAL DENSITY? A PERFORMANCE COMPARISON

FOR DIFFERENT READOUT SCHEMES

As shown in the previous sections, the bias signal w
form ~6! can improve the performance~based on the separa
tion ^DT& of the mean residence times! of this readout
scheme under the appropriate conditions. We now investi
whether this is sufficient to make the RTD-based techni
competitive with conventional readout schemes based on
PSD. In order to carry out this comparison we must aban
the~somewhat simplistic! ST and, instead, analyze one of th
potential systems~2! or ~10!, together with a more genera
performance measure. Since both potential systems be
similarly we have used the equivalent Duffing potential~10!
which is somewhat easier to analyze. We start with a stoc
tic perturbation expansion of the dynamical system; t
leads us to expressions for the probability density functi
of the crossing times between the stable states.
residence-time-based readout scheme will be seen to b
least asymptotically, as good as any other readout-sche
based on time measurements. Finally the residence
based scheme and the ‘‘conventional,’’ i.e., based on
PSD, scheme are compared via Monte Carlo simulations

A. Stochastic perturbation expansion

We start by introducing a stochastic processZ
5(z t ,h t ,xt) in R3. The system described by Eqs.~9!, ~10!,
and~14! can then be written in the form of an~Itô! stochastic
differential equation~SDE!

dZt5g1~Zt!dt1sg2~Zt!dWt , Z05z0 , ~43!

whereZ componentwise is defined by

S dz t

dh t

dxt

D 5S 2tc
21z t

1

axt2bxt
31«1ht1gz t

D dt1sS 1

0

0
D dWt .

~44!

Heres is assumed to be a small noise standard deviation
the second equation only expresses time as a state vari
The asymptotic properties fors→0 of equations such as Eq
~43! have been analyzed in Ref.@36#. If j now is used as the
formal time derivative of the Brownian motionW, Eq. ~43!
can be written as

Żt5g3~Zt ,sj t!, Z05z0 , ~45!

where

g3~u,sv !5g1~u!1sg2~u!v, uPR3,vPR.
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In order to arrive at a sequence of approximations to
solution Z to Eq. ~43! the following perturbation ansatz i
made. The solutionZ to Eq. ~45! is formally expanded in
terms of powers ofs as

Zt5Zt
(0)1sZt

(1)1•••1skZt
(k)1••• ~46!

and the right-hand side of Eq.~45! is, accordingly, also ex-
panded in terms of powers ofs. If the coefficients on both
sides of the arisen equality

Żt
(0)1sŻt

(1)1•••5g3~Zt
(0),0!

1sS dg3~Zt
(0)1sZt

(1)1•••,sj t!

ds
U

s50
D

1•••

5g3~Zt
(0),0!1s@G31~Zt

(0),0!Zt
(1)

1G32~Zt
(0),0!j t#1•••,

are then equated the following differential equations for
correction terms~functions! emerge

Żt
(0)5g3~Zt

(0),0!,

Żt
(1)5G31~Zt

(0),0!Zt
(1)1G32~Zt

(0),0!j t , ~47!

•••,

where the matrixG31 and vectorG32 are given by

G31~Zt
(0),0!5S 2tc

21 0 0

0 0 0

g h8~ t ! a23b~Zt
(0)!2

D ,

G32~Zt
(0),0!5S 1

0

0
D ,

and the initial conditions areZ0
(0)5z0 ,Z0

(1)50, . . . . The de-
tails for the higher-order corrections~for k>2) are easily
calculated, see Ref.@36#. It turns out that all higher correc
tions are linear inj and it follows therefore that the vecto
processZk115(Z(0), . . . ,Z(k))T obtained by considering si
multaneously thek11 first corrections in Eq.~47! repre-
sents, formally, an SDE. In Theorem 2.2 of Ref.@36# it is
shown that if the components ofg1 ,g2 have bounded partia
derivatives up to (k11)th order~inclusive!, then the SDE
for Zk11 is in fact well defined with a strong solution and th
component( i 50

k skZ(k) is an approximation toZ for which
the error is asymptotically small in mean square ass→0.
Therefore akth order expansion like Eq.~46! will henceforth
be denoted as

Zt5Zt
(0)1sZt

(1)1•••1skZt
(k)1O~s!, ~48!
0-13
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where the remainder term is primarily to be interpreted
asymptotically small in a mean squared sense.

B. First-order approximation

From Eq.~47! it is seen that the zero-order approximati
is simply the deterministic ordinary differential equation th
would be obtained by settings50 in Eq. ~43!, and that the
first-order approximation is obtained by linearizing Eq.~43!
around the nominal deterministic trajectory obtained fro
the order zero approximation. We now study the first-or
approximation and suppose that Eq.~48! holds fork51 and
thatz0 is an interior point of a domainD in R3 such that the
first exit timet0 of the processZt

(0) from D is finite. Suppose

further that the boundary is differentiable atZt0
(0) , let n̄ be the

exterior normal to the boundary atZt0
(0) and denote the firs

exit time of the processZt from D by ts . Then if (Żt0
(0) ,n̄)

.0 we have@36#

ts5t01s
~Zt0

(1) ,n̄!

~ Żt0
(0) ,n̄!

1O~s!, ~49!

where the remainder term should be interpreted in the se
used in Eq.~48!. Hence the first passage time problem for t
time varying potential with colored noise can be formulat
as the problem of determiningts in Eq. ~49! when x0
,xlimit , wherexlimit is a barrier for the variablex. In this
case n̄ becomes simplyn̄5(0,0,1)T and the condition
(Żt0

(0) ,n̄).0 in Eq. ~49! reduces toẋt0
(0).0 wherex(0) is the

last component in the solution to the first equation in E
~47!.

Since W is a Gaussian process, so is the first-order
proximationx(1), and the first passage timets is therefore a
Gaussian variable with meant0 and a variance

V~ts!5s2
E~xt0

(1)!2

~ ẋt0
(0)!2

. ~50!

Further, the~unique! solution to the second equation in E
~47! is well known to be~see, e.g., Ref.@36#!,

Zt
(1)5E

0

t

F~ t,r !g2~Zr
(0)!dWr , ~51!

whereF(t,s) is the transition matrix from times to t for the
flow ~smooth vector field! on R3 defined by

Żt
(1)5G31~Zt

(0),0!Zt
(1) .

In this case the transfer matrixF is given by

F~s,t !5expS 2E
s

t

G31~Zr
(0),0!dr D .

Hence Eq.~51! can be written as
01612
s

t

r
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-

Zt
(1)5E

0

t

expS 2E
q

t

G31~Zr
(0),0!dr D g2~Zq

(0)!dWq ,

and Eq.~50! therefore becomes

V~ts!5s2

E
0

t0
n̄TF~ t0 ,r !g2~Zr

(0)!g2
T~Zr

(0)!FT~ t0 ,r !n̄dr

~ ẋt0
(0)!2

5s2

E
0

t0
@F3,1~ t0 ,r !#2dr

~ ẋt0
(0)!2

, ~52!

where F3,1(t0 ,r ) is the third row, first column element o
F(t0 ,r ). This element is plotted against the normalized tim
t/T0 in Fig. 6.

Since we have assumed a clearlysuprathreshold bias sig-
nal, the previous crossing time, i.e., the start time, will be
@0,T/2#. For all such starting times numerical calculatio
show that the next deterministic crossing timet0 is reason-
ably independent of the starting time@18#. Further, as seen in
Fig. 6, the functionF3,1 is close to zero for alltP@0,T/2#
and therefore the integral in Eq.~52! will also be almost
independent of the starting time. Hence all crossing tim
will be approximately independent and Gaussian distribu
with means and variance given by Eqs.~49! and~52!, respec-
tively. This has, of course, already been observed in
crude~Schmidt trigger! model of the preceding section in th
largeA/s limit, when A is well suprathreshold.

C. Analysis of time-based readout

The approximate crossing times distributions calculated
the preceding section are important when evaluating per
mance measures for ‘‘time-based’’ devices. Since we a
want to compare the performance of these devices with

FIG. 6. The elementF3,1(t0 ,t) vs t/T0 for «50, s250.01, A
50.8, g51, T05100, start time50, and the parametersa,b for
the equivalent Duffing potential are computed via Eq.~11!, for c
54 in the mean field potential~2!.
0-14
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one obtained under different readout schemes, we hav
abandon the SNR in Eq.~21! and move on to a more gener
performance measure. There exist several possible way
define such a measure, however, since the expected val
the estimations is correct it seems natural to apply the cla
MMSE @38# ~minimum-mean-squared-error estimation! for-
malism, and consider the estimator with the lowest varia
of the result to be the best. Note, though, that the varia
associated with all the estimators will decrease towards z
when the observation time increases. Therefore, a finite
servation timeTob is used, and the goodness criterion of t
sensors is defined as the variance of the estimation, g
this observation time.

For residence-time-based devices there will ben(Tcomp)
switches between the stable states during the observa
time. As previously shown, all crossing times will be a
proximately Gaussian distributed with a mean that depe
on the target signal and a variance as in Eq.~52!. The depen-
dence between the separation of the mean crossing times
the target signal is linear for small asymmetrizing target s
nals, i.e.,

«5mcl , ~53!

wherem is the change of crossing time andcl a constant.
This has already been mentioned in an earlier section, a
can be confirmed by a numerical simulation of the syste
The crossing times independence therefore affords the p
bility of extracting the optimal achievable limit for any kin
of estimator based on crossing times. Let us defineūi andd̄i

as ūi5ui2u0 mod(T0) and d̄i5di2d0 mod(T0), i>1,
whereui anddi are the two~different! crossing times, from
one state to the other, and from the second back to the
Hereu0 andd0 are the first crossing times in the noise-fr
system in the absence of the dc target signal. It is rea
obtained thatmcross5mu52md @wheremu5E(ūi) and md

5E(d̄i)] and scross5su5sd @where su
25V(ūi) and sd

2

5V(d̄i)]. The set$ū1 ,ū2 , . . . ,ūn11 ,2d̄1 ,2d̄2 , . . . ,2d̄n%
will then consist of 2n11 independent identically distrib
uted Gaussian variables with meanmcross and variance
scross

2 . In this case it is known from Eq.~53! that the mini-
mum variance estimator of« is given by

ēopt5

(
i 51

n11

ūi2(
i 51

n

d̄i

2n11
cl ,

with a variance

V~ «̄opt!5
cl

2scross
2

2n11
, ~54!

which is easily proved by, e.g., the information equality@37#.
In the previously described approach that measures

mean difference in residence times^DT&, a displacement
mcross for the crossing times results in a mean residence-t
difference of 4mcross. The estimate of the target signal ther
fore becomes«̄ res5(cl /4)DT, where
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n S (
i 51

n

~di2ui !2(
i 51

n

~ui 112di !D .

The variance of the residence-time-based estimator will t
be

V~ «̄ res!5VS cl

DT

4 D5
cl

2

16
V~DT!,

whereV(DT)5V@(1/n)( i 51
n (2di2ui2ui 11)#, which, with

the definitionYi52di2ui2ui 11, becomes

V~DT!5VS 1

n (
i 51

n

~Yi !D 5
1

n2 S (i 51

n

V~Yi !

1(
iÞ j

(
j 51

n

Cov~Yi ,Yj !D ,

which by straightforward calculations can be shown to be

V~DT!5
8scross

2

n
2

2scross
2

n2
.

Hence, the residence-time-based estimator has the varia

V~ «̄ res!5
cl

2

16S 8scross
2

n
2

2scross
2

n2 D 5
cl

2scross
2

2n
2

cl
2scross

2

8n2
,

which is slightly worse than the optimal time based estim
tor, Eq. ~54!, although the performance is comparable~as-
ymptotically! for largen and is much easier to implement i
an experiment. In most cases the residence-time-based
out can, therefore, be considered to be the optimal t
based readout.

D. Comparison of different readouts

In the preceding section we illustrated the advantage
applying the residence-time-based readout scheme, if o
sensors involving time measurements were considered. H
ever, it is also instructive to analyze how this readout p
forms compared to other, more conventional, read
schemes, and to determine the optimal amplitude of the
signal. Such an investigation is likely to be quite exhausti
and beyond the scope of the current paper. However, a g
starting point is to compare the residence-time-based rea
scheme with a ‘‘conventional’’~PSD-based! readout, when a
time-sinusoidal bias signal is applied in each case. This c
putation will just show the most appropriate amplitude of t
sinusoidal bias, with the frequency kept fixed for both d
vices. This investigation can later easily be expanded to
compass larger signal families.

To compare the readouts,nsim , output trajectoriesxt ,t
P@0,Tob# are calculated for each amplitude of the drivin
signal. Based on these trajectoriesnsim , estimates of the tar-
get signal« are calculated with both the residence-time tec
nique and the conventional~PSD-based! technique, for each
amplitude. The variances of these estimates which, accor
0-15
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to the preceding subsection, could be used as perform
measures, are then used to establish the best bias signa
plitude for each method. However, it is also of interest
know how close the sensors are to theoptimal performance
limit. The optimal performance is given by the MMSE es
mator of« based on observations ofxt over @0,Tob#. In case
the target signal« is a zero mean Gaussian random variab
independent of both the initial conditionx0 and the driving
noise, the optimal performance is easy to calculate if
noise is white. Therefore, if we instead of adding the colo
noise processz t to the state incrementdxt in Eq. ~44! add a
~scaled! Brownian motion incrementswgdWt , we obtain the
following ~‘‘white noise’’! model on SDE form:

dxt5@ f ~xt!1«1ht#dt1swgdWt ,

where the functionf represents the Duffing potential,f (x)
5ax2bx3. The MMSE«̂ of « based onxt ,tP@0,Tob# for a
system of this type is well known~Sec. 17.7 of Ref.@39#!
and given by

«̂5

xTob
2x02E

0

Tob
@ f ~xt!1ht#dt

swg
2

s«
2

1Tob

, ~55!

wheres«
2 is the variance of the zero mean Gaussian rand

variable«. Whens«
2→` the formula~55! becomes identica

to that for the maximum likelihood~ML ! estimate of« ~Sec.
17.7 of Ref. @39#!. Thus, the ML estimator, which is wel
defined also when« is considered as an unknown constant
a limiting case of the optimal MMSE estimator in Eq.~55!
which is obtained whens«

2→` ~i.e., when« becomes ‘‘com-
pletely unknown’’!. The variance of the ML estimator there
fore provides a lower bound on the achievable performa
of any estimator of« when« is an unknown constant.

In Fig. 7 the variance of the estimates versus driving s
nal amplitude is shown for the two different kinds of reado
schemes~residence times, and PSD based! and the MLE. As
seen, the residence-time-based readout is nearly as go
the PSD-based case, although the sinusoidal bias signal
not be optimal for this sensor~at least under the paramete
considered here!. A triangular wave, or the wave form~6!
should improve the results; as already discussed, these w
forms provide local linearity where the wave form cross
the threshold. Clearly though, both devices perform mu
worse than the MLE, and it is obvious that both measur
techniques are nonoptimal. From these data it there
would appear that a MLE-based readout, or a residence-t
based readout with a carefully selected driving signal, wo
be preferable compared to a PSD-based readout. How
one very surprising result indicates that care should be ta
when interpreting the data. The variance of the estima
decreaseswhen the bias amplitude decreases, implying tha
weak bias amplitude might be preferable. For the PSD-ba
readout this is a counterintuitive result since in practical s
narios these sensors are normally driven with a large am
tude bias signal. It is therefore possible that the simple m
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els of Sec. II that we use to describe our sensors, may no
good enough. In this context it should be noted that in r
sensors involving, e.g., ferromagnetic cores, the noise floo
usually dependent on the driving signal. This is also in
cated by the experimental results shown in Fig. 10. In ad
tion, the driving signal, if applied at a sufficiently high fre
quency, can lead to frequency-dependent hysteresis beh
in the device, behavior that has not been covered by
phenomenological description. Clearly, an investigation
these issues should precede a rigorous investigation@beyond
the relatively simple discussions, in this paper, of the sys
response to nonsinusoidal wave forms, exemplified by
signal~6!# into the optimal signal wave form for a particula
readout scheme. However, despite these unresolved is
we can at least conclude that the time series of the ou
voltage from the fluxgate probe seems to contain more in
mation about the target signal than that which can be
tracted via conventional~PSD-based! and residence-time
based readouts.

VII. EXPERIMENTS

In order to reconcile some of the ideas of this paper
experimental data some preliminary experiments were p
formed on a test device, a very simple laboratory realizat
of a residence-time-based fluxgate magnetometer. A prem
netizing coil with 50 turns and a pick-up coil with 135 turn
were wound in a transformerlike configuration on a multid
main ferromagnetic strip-wound ring core characterized b
coercivity of less than 3 A/m. The diameter and the cro
sectional area of the ring were 26 mm and 1.932.8 mm2,

FIG. 7. The variance of the estimations vs the sinusoidal b
signal amplitude for the residence-time-based~solid line!, PSD-
based ~dashed line!, and MLE-based~bottom dash-dotted line!
method. Here the parametersa,b, and v are as in Fig. 6,g51,
Tob53000, and the white noise intensity isswg5A231026.
0-16
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respectively. A ring core probe used in this configuration
not expected to possess full directional sensitivity and
sponse to external fields@2#. It can, however, serve the pu
pose of demonstrating the basic principle, without mak
any claims on living up to the possible operational perf
mance of a fluxgate magnetometer of this type. Note t
new, improved probes based on straight rod cores are u
fabrication, and the results for these devices will be p
lished later.

A function generator producing a triangular wave w
variable amplitudeA and frequency was connected to t
input of the device. A frequency of 100 Hz was used for
measurements. This allows one to use a non-frequency-b
description of the crossing dynamics, since frequen
dependent hysteresis in the core response is very small
also the bias signal has a minimal effect on the noise flo
The noise floor is assumed to be Gaussian bandlimi
which is a good assumption for the new genre of ‘‘sing
domain’’ ferromagnetic probes; non-Gaussian~i.e.,
Barkhausen! noise may in fact be present in these cores,
it is significantly smaller~in rms amplitude! than the gauss
ian noise. The 100 Hz driving frequency also ensures that
bias signal does not fall into the low-frequency noise rise

The time evolution of the input current and the outp
voltage were measured with a 16-bitA/D converter using a
sampling rate of 40 kHz. Alternatively, the pick-up coil wa
connected to a universal counter for measuring the reside
times T1 and T2 . The bias field was estimated from th
input current by applying Ampere’s law on the ring geom
etry.

The zero target measurements were performed insid
shielded cage consisting of concentrically arranged~and lid-
ded! cylindrical shells made ofm metal and copper. The
measurements with target signal were performed in the p
ence of the geomagnetic field, which served as the tar
They were made after maximizing the effective targ
strength by simply rotating the device until a maximum d
ference between̂T1& and ^T2& was found. At the location
of the experiment this corresponded to a field strength
about 50mT ~the magnitude of the geomagnetic field!.

Figure 8 shows the output voltage from the pick-up c
for four different amplitudes—twosubthreshold and two
suprathreshold—of the bias signal resulting in nonsatura
and saturated magnetization, respectively. These mea
ments were performed without target field. The output vo
age ~this is our experimental observable!, which is propor-
tional to the derivative of the magnetic flux in the cor
consists of a number of successive spikes correspondin
switches between positive and negative magnetization~rela-
tive to the magnetic state when the bias signal was appli!.
A shift of the spike positions from the extrema towards t
zero crossings of the bias signal can be observed as the
material is gradually driven deeper into saturation. For
highest bias amplitude the saturated flux density is rap
reached and the~sharp! spikes nearly coincide with the zer
crossings of the bias signal.

The time evolution of the magnetic flux densityB in the
core material and the magnetization curves were calcul
from the experimental data by integrating the output volta
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from the pick-up coil. For each set of data the unknow
integration constant was assigned a value in order to m
the times series ofB centered around zero. The results f
two amplitudes of the bias signal (A52 and 20 A/m, corre-
sponding to nearly saturated and saturated cores, res
tively! are shown as solid curves in Fig. 9. Due to hystere
effects~irreversible magnetization! changes in the magneti
flux B in the core ‘‘lag behind’’ changes in the magnetizin
bias fieldH. In Fig. 9 this can be observed as a distortion
B from the triangular form of the bias signal and the appe
ance of hysteresis loops in the magnetization curves. For
saturated case~right panels! B has nearly a rectangular wav
form and long tails develop in the magnetization curves.

In order to study the ability of the mean field model wi
the ‘‘soft’’ potential @Eq. ~2!# to reproduce the experimenta
details of the ferromagnetic behavior of the core, simulatio
of B versus time and hysteresis loops were made. In th
calculations a dimensionless temperatureT51/1.4 (c51.4)
was used. The results are shown as dashed curves in F
For the saturated case~right panels! the experimental data
are quite well described by this model. For the nonsatura
case ~left panels!, however, only the time evolution ofB
seems to be fairly well matched. For even lower bias am
tudes the model is unable to reproduce either the time se
or the hysteresis loops. Also the equivalent quartic mode
unable to reproduce the salient features of the time series
the hysteresis loops at very low~subthreshold! bias ampli-
tudes. This model also fails at extremely high~very suprath-
reshold! bias amplitudes. Note, however, that despite th
discrepancies, both models can reproduce, to a very g
approximation, the qualitative behavior in, e.g.,^DT& also
for very highsuprathreshold bias signals.

FIG. 8. Output voltage from the pickup coil for four differen
amplitudes of the bias field. From left to rightA'20, 3.3, 2.0, and
1.4 A/m. Bias periodT050.01 s. The dashed curve is a guide f
the eyes, and indicates the phase of the bias field.
0-17
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Figure 10 shows the~Gaussian-like! residence-time distri-
butions for three different bias amplitudesA. The data were
compensated for offsets~in the range of about 0.5 to 30ms,
with the larger value corresponding to the case of the we
est bias signal! which were obtained from zero-field mea
surements inside the shielded cage. In all cases, the c
RTD corresponds to the case of zero target signal. In
presence of a target signal the residence timesT1 andT2 are
different, and consequently the quantitŷDT&5^T1&
2^T2& can be used as a measure of the asymme
producing target field. Within our experimental precision
linear relationship between the target signal and^DT& was
found. This is in good agreement with expectations fo
pulse-position-based readout technique@2#. Such a relation-
ship should be expected~as already discussed! from the
RTD-based readout when« is small; it has already bee
theoretically computed in the limiting case of zero bias s
nal @9#. From the slope of a linear fit to the data a response
about 7 ns/mT for our simple test device was found, when
was driven with a 10 kHz bias frequency. Note that th
result is not expected to be representative for a well desig
device~currently under construction!.

In Fig. 10 it can readily be seen that the effect of loweri
the bias amplitude is twofold. First of all there is an increa
in ^DT& for a given target signal strength, and second it le
to a wider spread in the residence times. For example, l
ering the bias amplitude from 41 to 20 A/m appears to re
in a performance improvement which can be observed a
larger increase in̂DT& as compared to the dispersion of th

FIG. 9. Upper panels: magnetic flux density vs time of the f
romagnetic ring core forA52 ~left panel! and 20 A/m~right panel!.
Lower panels: the same measurement results shown as hyst
loops. Solid curves are calculated results from experimental
and dashed curves are simulated data using the ‘‘soft’’ potentia~2!
with c51.4 andA54.0. Note that theB axis has been rescaled fo
the simulations in order to be able to compare it to the experime
data.
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RTDs, i.e., the gained response to external target fields se
to be larger than the cost due to a wider spread in the r
dence times. However, further lowering the bias amplitu
down to 4.1 A/m~where the core material is only weakl
saturated! a much larger spread in the residence times
observed, and the background noise makes its pres
clearly known in the density function for smallA.

There may be many reasons for this large dispersion
low bias amplitudes. One possible explanation could be
due to the less saturated core material~and possible memory
effects caused by ‘‘noncomplete’’ magnetic domain alig
ment along the bias field! the magnetic hysteresis loop is n
well defined. This could, then, lead to varying residen
times because different paths around the hysteresis loop
be taken for each cycle. Even in this situation, however, o
observes a well-defined̂DT& which, in an experiment, may
readily be computed using the arithmetic mean of a la

-

esis
ta

al

FIG. 10. Residence-time distributions for three different amp
tudes (541,20, and 4.1 A/m, from top to bottom panels! of the
triangular bias signal. The data have been normalized to the pe
T0510 ms. Dashed curves: zero target case. Solid curves: effe
target field of about 50mT. The data have been compensated
offsets. The effect of decreasing the bias amplitude is twofold.
a fixed target field the separation^DT& grows with decreasing bias
amplitudes, at which point the fluctuations due to the noise ba
ground also manifest themselves in the density function.
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numberN of observed crossing events. We reiterate that
practical scenarios, a computation of the average reside
times via the arithmetic mean is sufficient; it is not necess
to compute a density function and then compute the me
via integration. Hence, the accuracy of the measuremen
^DT& depends on the magnitude ofN. Of course, the magni
tude of N is constrained by the observation time as alrea
discussed in Sec. V.

Despite the crudeness of the setup, the experimental fi
ings do qualitatively agree with the results of the simulatio
shown in Fig. 4. This, in turn, has led to the~currently on-
going! construction of a fluxgate magnetometer utilizing t
residence-time-based readout scheme. One important
when optimizing the bias signal for a real device would th
be to find the optimum balance between the gain in resp
sivity and the increase in the noise level of the reside
times.

VIII. CONCLUSIONS

In this work we have presented an alternative to qua
fying the output of a nonlinear dynamic system via t
power spectral density. The residence-time-based techn
is relatively simple to implement in practical scenarios;
that is required is for the detection/processing electronic
keep track of threshold crossing events and maintain a
ning average, the arithmetic mean, of the residence time
each stable state. Then the quantity^DT& provides a measure
of the unknown target signal that created the asymmetry a
therefore, a nonzerôDT&. While the target signal in this
work is taken to be dc, it is clear that a modification of t
residence-time-based readout scheme could be effecte
more complex signals. It is also clear that the choice of
bias signal wave form is important to the issue of over
sensitivity defined, roughly, as the ability to discriminate t
means of the residence-time densities in the presence
small asymmetrizing target signal. The bias signal amplitu
does not need to be extremely large. In fact, our results,
those of our earlier publication@9#, indicate that the bes
response to the target signal is obtained for zero bias sig
in theory, at least. In this scenario the level crossing eve
are solely controlled by the background noise. In pract
however, unless the noise level is high enough to induce
acceptable~spontaneous! crossing rate, one must impose th
bias signal to control the crossings. In this case the no
leads to a spread in the crossing rate about its determin
value, when the bias signal issuprathreshold. Clearly, in
such a situation, it would be preferable to adjust the sys
parameters@e.g., the constantc in the potential energy func
tion ~2!# so that the energy barrier is lowered when we
target signals are to be detected in a noise floor. In the
sence of such a control, however, adjusting the bias am
tudeA, or the triangular signal amplitudek2 when we use the
bias wave form~6!, effectively raises or lowers the energ
barrier. With a large background noise floor, the dens
functions tend to merge, leading to inaccuracies in the co
puted^DT& unless a large numberN of observations can be
made. IncreasingA enables one to better resolve the dens
functions, even as it leads to a greater power requirem
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Hence, one must also consider the tradeoff between sens
ity and power when designing a sensor aimed at a partic
class of target signals. Noise effects become more impor
as the bias signal amplitude approaches the threshold;
RTD is no longer Gaussian, it develops tails and its mean
mode separate.

A theoretical computation of̂DT& has been carried out in
the regime of large~suprathreshold! bias signal and smal
noise; in this~Gaussian! limit, the dynamical system is wel
approximated by a nondynamical dual-threshold represe
tion. For small target signals one easily obtains^DT&}«.
The separation̂DT& is, further, very weakly dependent o
the noise in the largeA/s limit ~the Gaussian limit that ha
featured so prominently in our discussion!. In this limit, the
noise statistics, also, do not have a significant effect o
^DT&. For subthreshold bias signals, the theory of this pap
breaks down. In practical operation, however, one can
computê DT& by simple averaging as done for thesuprath-
reshold bias case; in this case, however, the mean value s
ration is noise-dependent and one may optimize it using
SR scenario@6#. The RTD forsubthreshold bias signals ca
be multimodal~depending on the noise variance, signal a
plitude, and potential barrier height!, however, in the optimal
case it collapses into a single near-Gaussian peak atT0/2.
This case underpins the interpretation of SR as abona fide
resonance@7#. Note that for thesubthreshold bias signal case
one may compute@13# the residence times in theA/s!1
limit ~the often-discussed SR regime!. The case of strong
~but still subthreshold! bias signals and weak noise, i.e
A/s@1 has recently been analyzed in some detail@40#. In
this regime, one obtains a near-exponential dependenc
^DT& on the asymmetrizing signale, indicating that optimal
sensitivity in this technique might be achievable for bias s
nal amplitudes hovering around the threshold of the ene
barrier. Assuming prior knowledge of the sensor characte
tics, it is reasonable to expect that one could determine
energy barrier height in practical applications, thereby
fording a convenient route to setting the known bias am
tude.

The bias frequency does not figure prominently into t
crossing statistics when we work in the nondynamical lim
however, in the general case, the frequency must be care
selected. In some ferromagnetic cores, employed, for
stance, in the simple magnetometer used in our experime
the ~non-Gaussian! Barkhausen noise floor depends on t
bias frequency, through its effect on the slip dynamics of
domain walls; usually there exists a~material-dependent! op-
timal frequency at which these effects are negligible@30#.
Also, for the case of a soft ferromagnetic core the width
the hysteresis loop, which determines the energy dissip
per cycle, can depend on the frequency and amplitude of
bias signal.

Keeping the bias signal amplitude and frequency as
as possible can lead to significantly reduced on-board pow
in a real device, this can be an important considerati
However, clearly, the tradeoff between on-board power a
the observation timeTob—which determines the accuracy o
the experimental estimate of the quantity^DT&—eventually
dictates how the sensor is operated.
0-19
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The proposed technique is part of the genre of syste
operated based on their level crossing dynamics. It shoul
readily applicable to a large class of dynamic sensors tha
operated as detectors of very small target signals, particu
when the detection scheme and the sensor dynamics
themselves to operation under a known bias signal wh
wave form must be carefully selected for optimal sensitiv
In this context we reiterate that the time-sinusoidal bias s
nal is not necessarily the wave form that yields the best o
put sensitivity~or resolution!. The rigorous analysis of Sec
VI indicates, in fact, that with the time-sinusoidal bias wav
form one might expect the RTD-based approach to yield s
sitivity comparable to conventional~PSD-based! techniques.
However, we hasten to point out that, while the analysis
Sec. VI was carried out in the context of a sinusoidal b
wave form, one would usually use a triangular wave form,
wave form~6! in practice. Both these wave forms outperfor
the sinusoidal wave form, and they also enable the RT
based approach to outperform conventional processing
addition, one must take into account the inherent simplic
of the RTD approach, particularly with regard to the read
electronics and processing. Typically, a simple counting
cuit is required, in contrast to the feedback electronics t
are usually a part of readout schemes; more complica
electronics usually add more noise to the already pre
noise floor. By contrast, in our simple experiments on
prototype nonlinear dynamic sensor~the fluxgate magneto
meter! described in the preceding section, one can implem
the RTD readout with just one excitation coil and one det
tion coil without the need for implementing a differenti
structure~usually done to cancel out steady ambient m
netic fields!. Most importantly, the RTD approach can b
implemented with low-amplitude and low-frequency bi
signals which result in significantly reduced on-board pow
requirements.

In addition to the experiments described in the preced
section, another laboratory prototype fluxgate magnetom
using the RTD technique, has already been constructed
operated via the procedure described in this work. It i
e

.
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planar device, developed in PCB technology, and boasts
mensions small enough to fit comfortably~minus the readout
electronics! into a small cigarette pack. The instrument em
ploys a triangular bias wave form and a very simple digi
counter to keep track of the crossing events@41#. The labo-
ratory device~excluding the readout electronics! costs about
$1, and has an amorphous metal~or metallic glass alloy,
Metglass! core. Current experiments, ongoing at the Univ
sity of Catnaia, Italy, are aimed at enhancing its sensitiv
resolution by incorporating this device into a coupled arr
with the ultimate goal of constructing a network of fluxgat
using MeMs technology.

It is worth pointing out that the idea of threshold crossi
events leading to a quantification of external signals
deeply rooted in the computational neuroscience repert
wherein one analyzes the response of a single neuron
even a small network, to a stimulus by examining the sta
tics of the point process generated by successive thres
crossings or ‘‘firings.’’ This point has already been touch
on in Sec. I, but it is important enough to reiterate in th
section: our proposed mode of operation actually leads to
implementation of these sensors as ‘‘neural’’-like devices

Subsequent work must focus~among other issues! on the
determination of the optimal bias signal wave form in term
of specific sensor and operational parameters. Clearly, t
could be other wave forms besides the sinusoidal bias
wave form~6! that might be optimal under different cond
tions. Continued investigations into the~non-Gaussian!
material-dependent noise floor are also important, althou
as exploited in this work, this noise may effectively be ch
acterized as Gaussian bandlimited noise subject to the ap
priate fabrication, materials, and geometry constraints.
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